Two TTX-resistant Na+ currents in mouse colonic dorsal root ganglia neurons and their role in colitis-induced hyperexcitability.

نویسندگان

  • Michael J Beyak
  • Noor Ramji
  • Karmen M Krol
  • Michael D Kawaja
  • Stephen J Vanner
چکیده

The composition of Na+ currents in dorsal root ganglia (DRG) neurons depends on their neuronal phenotype and innervation target. Two TTX-resistant (TTX-R) Na+ currents [voltage-gated Na channels (Nav)] have been described in small DRG neurons; one with slow inactivation kinetics (Nav1.8) and the other with persistent kinetics (Nav1.9), and their modulation has been implicated in inflammatory pain. This has not been studied in neurons projecting to the colon. This study examined the relative importance of these currents in inflammation-induced changes in a mouse model of inflammatory bowel disease. Colonic sensory neurons were retrogradely labeled, and colitis was induced by instillation of trinitrobenzenesulfonic acid (TNBS) into the lumen of the distal colon. Seven to ten days later, immunohistochemical properties were characterized in controls, and whole cell recordings were obtained from small (<40 pF) labeled DRG neurons from control and TNBS animals. Most neurons exhibited both fast TTX-sensitive (TTX-S)- and slow TTX-R-inactivating Na+ currents, but persistent TTX-R currents were uncommon (<15%). Most labeled neurons were CGRP (79%), tyrosine kinase A (trkA) (84%) immunoreactive, but only a small minority bind IB4 (14%). TNBS-colitis caused ulceration, thickening of the colon and significantly increased neuronal excitability. The slow TTX-R-inactivating Na current density (Nav1.8) was significantly increased, but other Na currents were unaffected. Most small mouse colonic sensory neurons are CGRP, trkA immunoreactive, but not isolectin B4 reactive and exhibit fast TTX-S, slow TTX-R, but not persistent TTX-R Na+ currents. Colitis-induced hyperexcitability is associated with increased slow TTX-R (Nav1.8) Na+ current. Together, these findings suggest that colitis alters trkA-positive neurons to preferentially increase slow TTX-R Na+ (Nav1.8) currents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nicotine suppresses hyperexcitability of colonic sensory neurons and visceral hypersensivity in mouse model of colonic inflammation.

Recently, we reported that nicotine in vitro at a low 1-μM concentration suppresses hyperexcitability of colonic dorsal root ganglia (DRG; L(1)-L(2)) neurons in the dextran sodium sulfate (DSS)-induced mouse model of acute colonic inflammation (1). Here we show that multiple action potential firing in colonic DRG neurons persisted at least for 3 wk post-DSS administration while the inflammatory...

متن کامل

TRANSLATIONAL PHYSIOLOGY Opioid-induced hypernociception is associated with hyperexcitability and altered tetrodotoxin-resistant Na channel function of dorsal root ganglia

Ross GR, Gade AR, Dewey WL, Akbarali HI. Opioid-induced hypernociception is associated with hyperexcitability and altered tetrodotoxin-resistant Na channel function of dorsal root ganglia. Am J Physiol Cell Physiol 302: C1152–C1161, 2012. First published December 21, 2011; doi:10.1152/ajpcell.00171.2011.—Opiates are potent analgesics for moderate to severe pain. Paradoxically, patients under ch...

متن کامل

Opioid-induced hypernociception is associated with hyperexcitability and altered tetrodotoxin-resistant Na+ channel function of dorsal root ganglia.

Opiates are potent analgesics for moderate to severe pain. Paradoxically, patients under chronic opiates have reported hypernociception, the mechanisms of which are unknown. Using standard patch-clamp technique, we examined the excitability, biophysical properties of tetrodotoxin-resistant (TTX-R) Na(+) and transient receptor potential vanilloid 1 (TRPV1) channels of dorsal root ganglia neurons...

متن کامل

Mechanisms of protease-activated receptor 2-evoked hyperexcitability of nociceptive neurons innervating the mouse colon.

Agonists of protease-activated receptor 2 (PAR(2)) evoke hyperexcitability of dorsal root ganglia (DRG) neurons by unknown mechanisms. We examined the cellular mechanisms underlying PAR(2)-evoked hyperexcitability of mouse colonic DRG neurons to determine their potential role in pain syndromes such as visceral hyperalgesia. Colonic DRG neurons were identified by injecting Fast Blue and DiI retr...

متن کامل

Differing alterations of sodium currents in small dorsal root ganglion neurons after ganglion compression and peripheral nerve injury

Voltage-gated sodium channels play important roles in modulating dorsal root ganglion (DRG) neuron hyperexcitability and hyperalgesia after peripheral nerve injury or inflammation. We report that chronic compression of DRG (CCD) produces profound effect on tetrodotoxin-resistant (TTX-R) and tetrodotoxin-sensitive (TTX-S) sodium currents, which are different from that by chronic constriction inj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 287 4  شماره 

صفحات  -

تاریخ انتشار 2004